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Chapter 1

Bayesian inference

1.1 Introduction

Part 1 of the module started with the analysis of frequentist techniques for estimation. Many people
now question the repeated sampling framework within which such techniques are grounded, and
in any case, as soon as you move to more complex models, the frequentist machinery becomes
unmanageable.

Next the theory of maximum likelihood was examined. This framework copes well with more
complex models, particularly with the aid of a computer. However, the foundations of likelihood
theory are not particularly compelling (to some), they provide no mechanism for incorporating
prior information into the model (particularly problematic for models which are unidentifiable or
weakly identifiable), and do not give full probabilistic information about parameters.

All of the problems associated with likelihood theory are addressed by the Bayesian approach
to statistical inference. Until recently, however, Bayesian computation for complex models was
prohibitively complex. Fortunately, if one is prepared to abandon an analytic approach to com-
putation, and use stochastic simulation techniques, then Bayesian inference may now be used to
analyse almost any statistical problem, of any complexity, and the analysis is more informative
than any that could be carried out using frequentist or likelihood based techniques. That is not
to say that Bayesian computation based on stochastic simulation is easy, or without many prob-
lems and difficulties — this is most certainly not the case. However, for many researchers, the
power of modern Bayesian machinery is very appealing, and provides their favoured framework
for statistical inference.

In this part of the module we will look briefly at why analytic approaches to Bayesian infer-
ence in complex models are generally intractable, before moving on to stochastic simulation and its
application to Bayesian inference. Stochastic simulation is a very powerful technique with many
applications outside Bayesian inference. It would therefore be inappropriate to introduce and de-
velop all of the techniques of stochastic simulation in that context. Therefore, all of the simulation
techniques will be developed in a general context, and only then applied to problems in Bayesian
inference.
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1.2 Bayesian inference

For two eventsE andF , theconditional probabilityof E givenF is

P(E|F) =
P(E∩F)

P(F)
.

From this we get the simplest version of Bayes theorem:

P(E|F) =
P(F |E) P(E)

P(F)
.

The Theorem of Total Probability states that for an eventF , and a partitionE1,E2, . . . ,En (one and
only one will occur), we have

P(F) = P(F |E1) P(E1)+ P(F |E2) P(E2)+ · · ·+ P(F |En) P(En)

=
n

∑
i=1

P(F |Ei) P(Ei) ,

from which we get the more commonly used version of Bayes theorem:

P(Ei |F) =
P(F |Ei) P(Ei)

n

∑
i=1

P(F |Ei) P(Ei)
.

Bayes theorem is useful because it tells us how to turn probabilities around. Often we are able to
understand the probability of someoutcome(F), conditional on various possiblehypotheses(Ei).
We can then compute probabilities of the form P(F |Ei). However, when we actuallyobserve
some outcome, we are interested in the probabilities of the hypothesesconditionalon the outcome,
P(Ei |F). Bayes theorem tells us how to compute these, but the answer also depends on the prior
probabilities for the hypotheses, P(Ei), and hence to use Bayes theorem, these too must be speci-
fied. Thus Bayes theorem provides us with a coherent way of updating our prior beliefs about the
hypotheses P(Ei) to P(Ei |F), our posterior beliefs based on the occurrence ofF .

This is how it all works for purely discrete problems, but some adaptation is required before
it can be used with continuous or mixed problems. For continuous problems, the hypotheses are
represented by a continuous parameter, usually denoted byΘ, and the outcomes, or data byX.
These may be scalars or vectors. We specify our prior beliefs aboutΘ in the form of a proba-
bility distribution with densityπ(θ). The data conditional on the hypotheses is modelled by the
conditional density,f (x|θ). If this is regarded as a function ofθ rather thanx, it is known as the
likelihood, and denotedL(θ;x). It is important to bear in mind that this isnot a density forθ — it
doesn’t even integrate to one!

Once the prior and likelihood have been specified, the full joint density over all parameters and
data is entirely determined:

fΘ,X(θ,x) = π(θ) f (x|θ) = π(θ)L(θ;x).

Once we have this joint distribution, we can marginalise or condition as required. For example, we
can obtain the marginal distribution forX by integrating overΘ:

fX(x) =
∫

Θ
fΘ,X(θ,x)dθ =

∫
Θ

L(θ;x)π(θ)dθ.
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This is the equivalent of the Theorem of Total Probability for continuous variables. We can also
condition on the data:

fΘ|X(θ|x) =
fΘ,X(θ,x)

fX(x)

=
π(θ)L(θ;x)∫

Θ L(θ;x)π(θ)dθ
.

fΘ|X(θ|x) is the conditional density forΘ given X. It is known as theposterior density, and is
usually denotedπ(θ|x), leading to the continuous version of Bayes theorem:

π(θ|x) =
π(θ)L(θ;x)∫

Θ L(θ;x)π(θ)dθ

Now, the denominator is not a function ofθ, so we can in fact write this as

π(θ|x) ∝ π(θ)L(θ;x)

where the constant of proportionality is chosen to ensure that the density integrates to one. So,the
posterior is proportional to the prior times the likelihood.

1.3 Bayesian computation

In principle, the previous section covers everything we need to know about Bayesian inference —
the posterior is nothing more (or less) than a conditional distribution for the parameters given the
data. In practice however, this may not be entirely trivial to work with.

The first problem one encounters is choosing the constant of proportionality so that the density
integrates to one. If the density is non-standard (as is usually the case for non-trivial problems),
then the problem reduces to integrating the product of the likelihood and the prior (known as the
kernelof the posterior) over the support ofΘ. If the support is infinite in extent, and/or multi-
dimensional, then this is a highly non-trivial numerical problem.

Even if we have the constant of integration, if the parameter space is multi-dimensional, we
will want know what the marginal distribution of each component looks like. For each component,
we have a very difficult numerical integration problem.

1.3.1 Normal with unknown mean and variance

Consider the case where we have a collection of observations,Xi , which we believe to be iid
Normal with unknown mean and precision (the reciprocal of variance). We write

Xi |µ,τ∼ N(µ,1/τ).

The likelihood for a single observation is

L(µ,τ;xi) = f (xi |µ,τ) =
√

τ
2π

exp
{
−τ

2
(xi−µ)2

}

3



and so forn independent observations,x = (x1, . . . ,xn)′ is

L(µ,τ;x) = f (x|µ,τ) =
n

∏
i=1

√
τ

2π
exp
{
−τ

2
(xi−µ)2

}
=
( τ

2π

)n
2 exp

{
−τ

2

[
(n−1)s2 +n(x̄−µ)2]}

∝ τ
n
2 exp

{
−τ

2

[
(n−1)s2 +n(x̄−µ)2]}

where

x̄ =
1
n

n

∑
i=1

xi and s2 =
1

n−1

n

∑
i=1

(xi− x̄)2.

For a Bayesian analysis, we need also to specify prior distributions for the parameters,µ andτ.
There is a conjugate analysis for this problem based on the specifications:

τ∼Gamma(a,b)

µ|τ∼ N

(
c,

1
dτ

)
.

However, this specification is rather unsatisfactory —µ andτ are not independent, and in many
cases our prior beliefs forµ andτ will separate into independent specifications. For example, we
may prefer to specify independent priors for the parameters:

τ∼Gamma(a,b)

µ∼ N

(
c,

1
d

)
.

However, this specification is no longer conjugate, making analytic analysis intractable. Let us see
why:

π(µ) =

√
d
2π

exp

{
−d

2
(µ−c)2

}
∝ exp

{
−d

2
(µ−c)2

}
and

π(τ) =
ba

Γ(a)
τa−1exp{−bτ}

∝ τa−1exp{−bτ}

so

π(µ,τ) ∝ τa−1exp

{
−d

2
(µ−c)2−bτ

}
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giving

π(µ,τ|x) ∝ τa−1exp

{
−d

2
(µ−c)2−bτ

}
× τ

n
2 exp

{
−τ

2

[
(n−1)s2 +n(x̄−µ)2]}

= τa+ n
2−1exp

{
−τ

2

[
(n−1)s2 +n(x̄−µ)2]− d

2
(µ−c)2−bτ

}
.

The posterior density forµ andτ certainly won’t factorise (µ andτ are not independenta posteri-
ori), and will not even separate into the form of the conditional Normal-Gamma conjugate form
mentioned earlier.

So, we have the kernel of the posterior forµ andτ, but it is not in a standard form. We can gain
some idea of the likely values of(µ,τ) by plotting the bivariate surface (the integration constant
isn’t necessary for that), but we cannot work out the posterior mean or variance, or the forms of
the marginal posterior distributions forµ or τ, since we cannot integrate out the other variable. We
need a way of understanding posterior densities which does not rely on being able to analytically
integrate the posterior density.

In fact, there is nothing particularly special about the fact that the density represents a Bayesian
posterior. Given any complex non-standard probability distribution, we need ways to understand it,
to calculate its moments, to compute its conditional and marginal distributions and their moments.
Stochastic simulation is one possible solution.
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Chapter 2

Stochastic Simulation

2.1 Introduction

The rationale for stochastic simulation can be summarised very easily: to understand a statistical
model simulate many realisations from it and study them.

2.1.1 Normal with unknown mean and variance

If we can simulate lots of realisations from the posterior distribution forµ andτ, we can look at
histograms of theµ values, to get an idea of the marginal forµ. We can also look at the sample
mean and variance of theµ values to find out the posterior mean and variance of the marginal for
µ. In this respect, the simulation is a way of doing the integration by a chance, orMonte Carlo
method.

2.1.2 Monte Carlo integration

Suppose we have a random variableX, with PDF, f (x), and we wish to evaluate E(g(X)) for some
functiong(·). We know that

E(g(X)) =
∫

X
g(x) f (x)dx,

and so the problem is one of integration. However, if we cansimulaterealisationsx1, . . . ,xn of X,
then we may approximate the integral by

E(g(X))' 1
n

n

∑
i=1

g(xi).

In fact, even if we can’t simulate realisations ofX, but can simulate realisationsy1, . . . ,yn of Y (a
random variable with the same support asX), which has PDFh(·), then

E(g(X)) =
∫

X
g(x) f (x)dx

=
∫

X

g(x) f (x)
h(x)

h(x)dx

6



and so E(g(X)) may be approximated by

E(g(X))' 1
n

n

∑
i=1

g(yi) f (yi)
h(yi)

.

This procedure is known asimportance sampling, and can be very useful when there is reason-
able agreement betweenf (·) andh(·). However, before we can do anything, we need a way of
simulating random quantities from some standard distributions.

2.2 Uniform random numbers

Most stochastic simulation begins with a uniform random number generator. Most algorithms
require the generation of independent observations uniformly over the interval[0,1). Once we
haveU ∼U [0,1), we can use it in order to simulate random quantities from any distribution we
like. So, how do we do it?

Typically, a number theoretic method is used to generate a random integer from 0 to 2N−1
(often,N = 16, 32 or 64). This can be divided by 2N to give a number uniform on[0,1). Linear
congruential generatorsare often used for this purpose.

The algorithm begins with aseed x0 then generates new values according to the (deterministic)
rule

xn+1 = (axn +b mod 2N)

for carefully chosena andb. If a “good” choice ofa,b andN are used, this deterministic sequence
of numbers will have a cycle length of 2N and give every appearance of being random.

The NAG Fortran library uses

N = 59, b = 0, a = 1313.

Most computer programming languages have a built-in function for returning a pseudo-random
integer, or a pseudo-randomU [0,1) number. We will not worry too much about this, but rather
take it as our starting point, and look at how these can be used to simulate from more exotic
distributions.

2.3 Transformation methods

Suppose that we wish to simulate realisations of a random variableX, with PDF f (x). If we
also know the probability distribution functionF(x), and its inverseF−1(·), we can simulate a
realisation ofX using a singleU ∼U [0,1) as follows. Put

X̃ = F−1(U).

Then,X̃ has distributionF(·), and hence has the same distribution asX. This follows as

FX̃(x) = P
(
X̃ ≤ x

)
= P

(
F−1(U)≤ x

)
= P(U ≤ F(x))
= FU(F(x))
= F(x). (asFU(u) = u)

7



2.3.1 Uniform random variates

GivenU ∼U [0,1), we can simulateV ∼U [a,b) in the obvious way, that is

V = a+(b−a)U.

We can justify this as V has CDF

F(v) =
v−a
b−a

, a≤ v≤ b

and hence inverse

F−1(u) = a+(b−a)u.

2.3.2 Exponential random variates

ConsiderX ∼ Exp(λ). This has densityf (x) and distributionF(x), where

f (x) = λe−λx, x≥ 0

F(x) = 1−e−λx, x≥ 0

and so

F−1(u) =−1
λ

log(1−u), 0≤ u≤ 1.

So, to simulate a realisation ofX, simulateu from U [0,1), and then put

x =−1
λ

log(1−u).

Thenx is a simulated value ofX. Also, note that ifU ∼U [0,1), then 1−U ∼U(0,1], and so we
can just put

x =−1
λ

logu

to obtain our exponential variates.

2.3.3 Scaling

It is worth noting the scaling issues in the above example, as these become more important for dis-
tributions which are more difficult to simulate from. IfU ∼U [0,1), thenY = − logU ∼ Exp(1).
The parameter,λ, of an exponential distribution is ascale parameterbecause we can obtain ex-
ponential variates with other parameters from a variate with a unit parameter by a simple linear
scaling. That is, if

Y ∼ Exp(1)

then

X =
1
λ

Y ∼ Exp(λ).

8



In general, we can spotlocationandscaleparameters in a distribution as follows. IfY has PDF
f (y) and CDFF(y), andX = aY+b, thenX has CDF

FX(x) = P(X ≤ x)
= P(aY+b≤ x)

= P

(
Y ≤ x−b

a

)
= F

(
x−b

a

)
and PDF

fX(x) =
1
a

f

(
x−b

a

)
.

Parameters likea are scale parameters, and parameters likeb are location parameters.

2.3.4 Gamma random variates

One way to simulateX ∼Gamma(n,λ) random variates for integern is to use the fact that if

Yi ∼ Exp(λ),

and theYi are independent, then

X =
n

∑
i=1

Yi ∼Gamma(n,λ).

So, just simulaten exponential random variates and add them up. In particular, note thatExp(λ) =
Gamma(1,λ), and the independent sumGamma(n1,λ)+Gamma(n2,λ) = Gamma(n1 +n2,λ).

The first parameter of the gamma distribution (heren), is known as theshapeparameter, and
the second (hereλ) is known as thescaleparameter. The fact that the second parameter is a scale
parameter is important, because many gamma generation algorithms will only generate gamma
variables with a particular shape but unit scale. For example, in R, SPlus, and LISP-STAT, the
gamma PDF, CDF and random variate generation functions only allow specification of a shape
parameter — you must re-scale these appropriately yourself. We can do this easily because the
Gamma(α,β) PDF is

fX(x) =
βα

Γ(α)
xα−1e−βx, x> 0

and so theGamma(α,1) PDF is

fY(y) =
1

Γ(α)
yα−1e−y, y> 0.

We can see that ifY ∼Gamma(α,1), thenX = Y/β∼Gamma(α,β) because

fX(x) = β fY(βx).
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Consequently, the CDFs must be related by

FX(x) = FY(βx).

Techniques for efficiently generating gamma variates with arbitrary shape parameter is usually
based on rejection techniques (to be covered later). Note however, that for shape parameters which
are an integer multiple of 0.5, use can be made of the fact thatχ2

n = Gamma(n/2,1/2). So, if you
have a technique for generatingχ2 quantities, these can be used for generating gamma variates
whose shape parameter is an integer multiple of 1/2.

2.3.5 Normal random variates

Note that all we need is a technique for simulatingZ ∼ N(0,1) random variables. ThenX =
µ+ σZ ∼ N(µ,σ2). Also note that standard normal random variables can be used to generateχ2

random variables. IfZi ∼ N(0,1), and theZi are independent, then

C =
n

∑
i=1

Z2
i

has aχ2
n distribution.

CLT based method

One simple way to generate Normal random variables is to make use of the Central Limit Theorem.
Consider

Z =
12

∑
i=1

Ui−6

whereUi ∼ U [0,1). Clearly E(Z) = 0 and Var(Z) = 1, and by the central limit theorem,Z is
approximately Normal. However, this method isn’t exact. For example,Z only has support on
[−6,6], and is poorly behaved in the extreme tails. However, P(|Z|> 6) ' 2×10−9, and so this
method is good enough for many purposes.

Box-Muller method

A more efficient (and “exact”) method for generating Normal random variates is the following.
Simulate

Θ∼U [0,2π)

R2∼ Exp(1/2)

independently. Then

X = RcosΘ
Y = RsinΘ

are two independent standard Normal random variables. It is easier to show this the other way
around. That is, ifX andY are independent standard Normal random quantities, and they are

10



regarded as the Cartesian coordinates of a 2d random variable, then the polar coordinates of the
variable are square-rooted exponential and uniform.

Suppose thatX,Y ∼ N(0,1) and are independent. Then

fX,Y(x,y) =
1
2π

exp{−(x2 +y2)/2}.

Put

X = RcosΘ and Y = RsinΘ.

Then,

fR,Θ(r,θ) = fX,Y(x,y)
∣∣∣∣∂(x,y)
∂(r,θ)

∣∣∣∣
=

1
2π

e−r2/2
∣∣∣∣cosθ −r sinθ
sinθ r cosθ

∣∣∣∣
=

1
2π
× re−r2/2.

So, Θ and R are independent,Θ ∼ U [0,2π) and fR(r) = re−r2/2. It is then easy to show that
R2∼ Exp(1/2).

2.3.6 Mixtures

Suppose we can simulate fromfX(x) and fY|X(y|x), but that we want to simulate from the marginal
for Y, fY(y). First simulatex from fX(x), and then simulatẽY from fY|X(y|x). ThenỸ has the same
distribution asY:

FỸ(y) = P
(
Ỹ ≤ y

)
=
∫

X
P
(
Ỹ ≤ y|X = x

)
fX(x)dx

=
∫

X

∫ y

−∞
fY|X(z|x)dz fX(x)dx

=
∫

X

∫ y

−∞
fX,Y(x,z)dzdx

=
∫ y

−∞
dz
∫

X
fX,Y(x,z)dx

=
∫ y

−∞
fY(z)dz

= FY(y).

Example

Consider again the conjugate prior for the Normal model with unknown mean and variance. We
specifyπ(τ) andπ(µ|τ), thus determining

π(τ,µ) = π(τ)π(µ|τ).

One way we can simulate from the marginal forµ, π(µ), is to first simulateτ from π(τ), and then
use this to simulateµ from π(µ|τ). This will be a realisation from the marginalπ(µ). We could
then calculate the mean and variance of a sample, look at a histogram of the valuesetc. in order to
get an idea of the shape of the marginal.
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2.4 Rejection sampling

2.4.1 Uniform rejection method

Suppose we want to simulate fromf (x) with support on[a,b], and thatf (x)≤m, ∀x∈ [a,b]. Then
simulate

X ∼U [a,b) and Y ∼U [0,m).

Simulatex andy from these distributions, and acceptx as a simulated value fromf (x) if y< f (x),
otherwiserejectand try again.

Why does this work? Intuitively, we can see that it will work because it has the effect of
scattering points uniformly over the region bounded by the PDF and thex-axis. More formally,
call the acceptance regionA, and the accepted valuẽX.

FX̃(x) = P
(
X̃ ≤ x

)
= P(X ≤ x|(X,Y) ∈ A)

=
P((X ≤ x)∩ ((X,Y) ∈ A))

P((X,Y) ∈ A)

=

∫ b

a
P((X ≤ x)∩ ((X,Y) ∈ A)|X = z)× 1

b−a
dz∫ b

a
P((X,Y) ∈ A|X = z)× 1

b−a
dz

=

1
b−a

∫ x

a
P((X,Y) ∈ A|X = z) dz

1
b−a

∫ b

a
P((X,Y) ∈ A|X = z) dz

=

∫ x

a

f (z)
m

dz∫ b

a

f (z)
m

dz

=
∫ x

a
f (z)dz

= F(x).

So, in summary, we simulate a valuex uniformly from the support ofX, and accept this value with
probability f (x)/m, otherwise we reject and try again. Obviously the efficiency of this method
depends on the overall proportion of candidate points that are accepted. The actual acceptance
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probability for this method is

P(Accept) = P((X,Y) ∈ A)

=
∫ b

a
P((X,Y) ∈ A|X = x)× 1

b−a
dx

=
∫ b

a

f (x)
m
× 1

b−a
dx

=
1

m(b−a)

∫ b

a
f (x)dx

=
1

m(b−a)
.

If this acceptance probability is very low, the procedure will be very inefficient, and a better pro-
cedure should be sought — theenvelope methodis one possibility.

2.4.2 Envelope method

Once we have established that scattering points uniformly over the region bounded by the density
and the x-axis generates x-values with the required distribution, we can extend it to distributions
with infinite support, and make it more efficient, by choosing ourenvelopingregion more carefully.

Suppose that we wish to simulateX with PDF f (·), but that we can already simulate values
of Y (with the same support asX), which has PDFg(·). Suppose further that there exists some
constanta such that

f (x)≤ ag(x), ∀x.

That is,a is an upper bound forf (x)/g(x).
Consider the following algorithm. DrawY = y from g(·), and thenU = u∼U [0,ag(y)]. Accept

y as a simulated value ofX if u< f (y), otherwise reject and try again. This works because it
distributes points uniformly over a region coveringf (x), and then only keeps points in the required

13



region (underf (x)):

P
(
X̃ ≤ x

)
= P(Y ≤ x|U ≤ f (Y))

=
P([Y ≤ x]∩ [U ≤ f (Y)])

P(U ≤ f (Y))

=

∫ ∞

−∞
P([Y ≤ x]∩ [U ≤ f (Y)]|Y = y)g(y)dy∫ ∞

−∞
P(U ≤ f (Y)|Y = y)g(y)dy

=

∫ x

−∞
P(U ≤ f (Y)|Y = y)g(y)dy∫ ∞

−∞
P(U ≤ f (Y)|Y = y)g(y)dy

=

∫ x

−∞

f (y)
ag(y)

g(y)dy∫ ∞

−∞

f (y)
ag(y)

g(y)dy

=

∫ x

−∞

f (y)
a

dy∫ ∞

−∞

f (y)
a

dy

=
∫ x

−∞
f (y)dy

= F(x).

To summarise, simulateY = y from g(·), and accept this asX with probability f (y)/[ag(y)], oth-
erwise reject and try again.

Obviously, this method will work well if the overall acceptance rate is high, but not otherwise.
What is the overall acceptance probability? We have

P(U < f (Y)) =
∫ ∞

−∞
P(U < f (Y)|Y = y)g(y)dy

=
∫ ∞

−∞

f (y)
ag(y)

g(y)dy

=
∫ ∞

−∞

f (y)
a

dy

=
1
a
.

Consequently, we wanta to be as small as possible. Generally speaking, ifa> 50, the envelope
is not adequate — too many points will be rejected, so a better envelope needs to be found. If this
isn’t practical, then an entirely new approach is required — MCMC is a possibility (more on this
later).

2.4.3 Bayes theorem by the rejection method

Often in Bayesian inference we will understand the prior well, and be able to simulate from it
efficiently. However, we want to simulate from the posterior, and this is often more difficult.
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One possibility for simulating from the posterior is to use the envelope rejection method with
the prior as envelope. Put

π∗(θ) = π(θ)L(θ;x).

So,π∗(θ) = kπ(θ|x) for somek, and soπ∗(θ) is thekernelof the posterior forθ givenx. Clearly

π∗(θ)≤ π(θ)Lmax, ∀θ

whereLmax is the maximum value ofL(θ;x) overθ for givenx. So we can use the envelope method.
Simulateθ from π(θ), and accept it with probability

π∗(θ)
Lmaxπ(θ)

=
π(θ)L(θ;x)
Lmaxπ(θ)

=
L(θ;x)
Lmax

.

otherwise reject and try again. This is intuitively reasonable: the posterior only has support where
the prior has support, and you keep more of your simulated prior values where the likelihood is
high.

This technique is very elegant and appealing, but sadly only works for low dimensional prob-
lems where there is reasonable agreement between the prior and the likelihood, otherwise the
rejection rate is too high. In fact

P(Accept) =
∫

Θ

L(θ;x)
Lmax

π(θ)dθ

=
∫

Θ

π∗(θ)
Lmax

dθ

=
∫

Θ

kπ(θ|x)
Lmax

dθ

=
k

Lmax
.

We are usually using simulation methods because the constant of integration is unknown, so we
may not be able to calculate the acceptance probability exactly.
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Chapter 3

Markov Chains

The set{θ(t)|t = 0,1,2, . . .} is a discrete time stochastic process. Thestate space Sis such that
θ(t) ∈ S, ∀t and may be discrete or continuous.

A (first order)Markov chainis a stochastic process with the property that the future states are
independent of the past states given the present state. Formally, forA⊆ S,

P
(

θ(n+1) ∈ A|θ(n) = x,θ(n−1) = xn−1, . . . ,θ(0) = x0

)
= P

(
θ(n+1) ∈ A|θ(n) = x

)
, ∀x,xn−1, . . . ,x0 ∈ S.

The past states provide no information about the future state if the present state is known. The

behaviour of the chain is therefore determined by P
(

θ(n+1) ∈ A|θ(n) = x
)

. In general this depends

onn, A andx. However, if there is non dependence, so that

P
(

θ(n+1) ∈ A|θ(n) = x
)

= P(x,A) , ∀n,

then the Markov chain is said to behomogeneous, and thetransition kernel, P(x,A) determines
the behaviour of the chain. Note that∀x∈ S, P(x, ·) is a probability measure overS.

3.1 Discrete chains

3.1.1 Notation

When dealing with discrete state spaces, it is easier to write

P(x,{y}) = P(x,y) = P
(

θ(n+1) = y|θ(n) = x
)
.

In the case of a finite discrete state space,S= {x1, . . . ,xr}, we can writeP(·, ·) as a matrix

P =

 P(x1,x1) · · · P(x1,xr)
...

...
...

P(xr ,x1) · · · P(xr ,xr)

 .
Note that the elements are all non-negative and that the rows must sum to one. Such matrices are
known asstochastic matrices. The product of 2 stochastic matrices is another stochastic matrix,
and there is always at least one row eigenvalue equal to one (see the tutorial exercises!).
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Suppose that at timen, we have

P
(

θ(n) = x1

)
= π(n)(x1)

P
(

θ(n) = x2

)
= π(n)(x2)

...
...

P
(

θ(n) = xr

)
= π(n)(xr).

We can write this as anr-dimensional row vector

π(n) = (π(n)(x1),π(n)(x2), . . . ,π(n)(xr)).

What is the probability distribution at timen+1? Using the Theorem of Total Probability, we have

P
(

θ(n+1) = x1

)
= P(x1,x1)π(n)(x1)+P(x2,x1)π(n)(x2)+ · · ·+P(xr ,x1)π(n)(xr),

and similarly for P
(

θ(n+1) = x2

)
, P
(

θ(n+1) = x3

)
, etc.We can write this in matrix form as

(π(n+1)(x1),π(n+1)(x2), . . . ,π(n+1)(xr)) = (π(n)(x1),π(n)(x2), . . . ,π(n)(xr))

 P(x1,x1) · · · P(x1,xr)
...

...
...

P(xr ,x1) · · · P(xr ,xr)


or equivalently

π(n+1) = π(n)P.

So,

π(1) = π(0)P

π(2) = π(1)P = π(0)PP= π(0)P2

π(3) = π(2)P = π(0)P2P = π(0)P3

... =
...

π(n) = π(0)Pn.

That is, the initial distributionπ(0), together with the transition matrixP, determine the probability
distribution for the state at all future times.

3.1.2 Stationary distributions

A distributionπ is said to be astationary distributionof the homogeneous Markov chain governed
by the transition matrixP if

π = πP.

Note thatπ is a row eigenvector of the transition matrix, with corresponding eigenvalue equal to
one. It is also a fixed point of the linear map induced byP. The stationary distribution is so-
called because if at some timen, we haveπ(n) = π, thenπ(n+1) = π(n)P = πP = π, and similarly
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π(n+k) = π, ∀k≥ 0. That is, if a chain has a stationary distribution, it retains that distribution for
all future time. Note that

π = πP ⇐⇒ π−πP = 0

⇐⇒ π(I −P) = 0

whereI is ther× r identity matrix. Hence the stationary distribution of the chain may be found by
solving

π(I −P) = 0.

3.1.3 Convergence

Convergence of Markov chains is a rather technical topic, which we don’t have time to examine in
detail here. This short section presents a very informal explanation of why Markov chains often
do converge to their stationary distribution, and how the rate of convergence can be understood.

Let π be a (row) eigenvector ofP with corresponding eigenvalueλ. Then

πP = λπ.

Also πPn = λnπ. It is easy to show that for stochasticP we must have|λ| ≤ 1 (see exercises!).
We also know that at least one eigenvector is equal to one (the corresponding eigenvector is a
stationary distribution). Let

(π1,λ1), (π2,λ2), . . . ,(πr ,λr)

be the full eigen-decomposition ofP, with |λi | in decreasing order, so thatλ1 = 1, andπ1 is a
(re-scaled) stationary distribution. Now, forany initial distributionπ(0), we may write

π(0) = a1π1 +a2π2 + · · ·+arπr

uniquely, for appropriate choice ofai , as the eigenvectors ofP form a basis (this isn’t always true,
but making this assumption keeps the maths simple!). Then

π(n) = π(0) Pn

= (a1π1 +a2π2 + · · ·+arπr)Pn

= a1π1Pn +a2π2Pn + · · ·+arπrP
n

= a1λn
1π1 +a2λn

2π2 + · · ·+arλn
r πr

→ a1π1, asn→ ∞,

provided that|λ2|< 1. The rate of convergence is governed by the second eigenvalue,λ2. Provided
|λ2| < 1, the chain eventually converges to the stationary distribution, irrespective of the initial
distribution. If there is more than one unit eigenvalue, then there is an infinite family of stationary
distributions, and convergence to any particular distribution is not guaranteed.
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3.1.4 Reversible chains

If θ(0),θ(1), . . . ,θ(N) is a Markov chain, then the reversed sequence of states,θ(N),θ(N−1), . . . ,θ(0)

is also a Markov chain. To see this, consider the conditional distribution of the current state given
the future:

P
(

θ(n) = y|θ(n+1) = xn+1, . . . ,θ(N) = xN

)
=

P
(

θ(n+1) = xn+1, . . . ,θ(N) = xN|θ(n) = y
)

P
(

θ(n) = y
)

P
(
θ(n+1) = xn+1, . . . ,θ(N) = xN

)
=

P
(

θ(n+1) = xn+1|θ(n) = y
)
· · · · · · P

(
θ(N) = xN|θ(N−1) = xN−1

)
P
(

θ(n) = y
)

P
(
θ(n+1) = xn+1

)
P
(
θ(n+2) = xn+2|θ(n+1) = xn+1

)
· · · · · · P

(
θ(N) = xN|θ(N−1) = xN−1

)
=

P
(

θ(n+1) = xn+1|θ(n) = y
)

P
(

θ(n) = y
)

P
(
θ(n+1) = xn+1

)
= P

(
θ(n) = y|θ(n+1) = xn+1

)
.

This is exactly the condition required for the reversed sequence of states to be Markovian.
Now letP∗n(x,y) be the transition kernel for the reversed chain. Then

P∗n(x,y) = P
(

θ(n) = y|θ(n+1) = x
)

=
P
(

θ(n+1) = x|θ(n) = y
)

P
(

θ(n) = y
)

P
(
θ(n+1) = x

) (Bayes theorem)

=
P(y,x)π(n)(y)

π(n+1)(x)
.

Therefore in general, the reversed chain is not homogeneous. However, if the chain has reached its
stationary distribution, then

P∗(x,y) =
P(y,x)π(y)

π(x)
,

and so the reversed chain is homogeneous, and has a transition matrix which may be determined
from the transition matrix for the forward chain (and its stationary distribution).

If

P∗(x,y) = P(x,y), ∀x,y

then the chain is said to bereversible, and we have thedetailed balance equations:

π(x)P(x,y) = π(y)P(y,x), ∀x,y. (*)

If we have a chain with transition kernelP(x,y) and a distributionπ(·) satisfying (*), then it follows
that the chain is reversible with stationary distributionπ(·). The chain also has other nice properties
(such as positive recurrence) which make it comparatively well-behaved. We can see thatπ(·) must
be a stationary distribution by summing both sides overx. Once we know this, reversibility follows
immediately.
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Consider for a moment the converse problem to the one we have been considering. That is,
given a stationary distributionπ(·), can we find a transition kernelP(·, ·) such that (*) is satisfied?
That is, can we construct a reversible Markov chain which hasπ(·) as its stationary distribution?
The answer is “yes”, and we can do it in many different ways, but we shall return to this later, as it
is essentially what MCMC is all about.

3.2 Continuous state space Markov chains

Here we are still working with discrete time, but we are allowing the state spaceSof the Markov
chain to be continuous (eg. S⊆ R).

Example — AR(1)

Consider the AR(1) model

Zt = αZt−1 + εt , εt ∼ N(0,σ2).

It is clear that the conditional distribution ofZt givenZt−1 = zt−1 is just

Zt |(Zt−1 = zt−1)∼ N(αzt−1,σ2),

and that it does not depend on any other previous time points. Thus, the AR(1) is a Markov chain
and its state space is the real numbers, so it is a continuous state space Markov chain. Note however
that other classical time series models such as MA(1) and ARMA(1,1) arenotMarkov chains. The
AR(2) is asecond orderMarkov chain, but we will not be studying these.

3.2.1 Transition kernels

Again, for a homogeneous chain, we can define

P(x,A) = P
(

θ(n+1) ∈ A|θ(n) = x
)
.

For continuous state spaces we always haveP(x,{y}) = 0, so instead we defineP(x,y) by

P(x,y) = P
(

θ(n+1) ≤ y|θ(n) = x
)

= P
(

θ(1) ≤ y|θ(0) = x
)
, ∀x,y∈ S,

the conditional cumulative distribution function. This is the distributional form of the transition
kernel for continuous state space Markov chains, but we can also define the corresponding condi-
tional density

p(x,y) =
∂
∂y

P(x,y), x,y,∈ S.

We can use this to define the density form of thetransition kernelof the chain. This can also be
used more conveniently for vector Markov chains, where the state space is multidimensional (say
S⊆ Rn).
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Example

If we write our AR(1) in the form

θ(t+1) = αθ(t) + εt , εt ∼ N(0,σ2)

then

θ(t+1)|(θ(t) = x)∼ N(αx,σ2),

and so the density form of the transition kernel is just

p(x,y) =
1

σ
√

2π
exp

{
−1

2

(
y−αx

σ

)2
}
.

3.2.2 Stationarity and reversibility

Let the state at timen, θ(n) be represented by a probability density function,π(n)(x), x∈ S. By the
continuous version of the Theorem of Total Probability, we have

π(n+1)(y) =
∫

S
p(x,y)π(n)(x)dx. (†)

We see from (†) that a stationary distribution must satisfy

π(y) =
∫

S
p(x,y)π(x)dx,

which is the continuous version of the discrete matrix equationπ = πP.
Again, we can use Bayes theorem to get the transition density for the reversed chain

p∗n(x,y) =
p(y,x)π(n)(y)

π(n+1)(x)
,

which homogenises in the stationary limit to give

p∗(x,y) =
p(y,x)π(y)

π(x)
.

So, if the chain is reversible, we have the continuous form of the detailed balance equations

π(x)p(x,y) = π(y)p(y,x), ∀x,y∈ S. (‡)

Again, any chain satisfying (‡) is reversible with stationary distributionπ(·). We can see that
detailed balance implies stationarity ofπ(·) by integrating both sides of (‡) with respect tox. Once
we know thatπ(·) is the stationary distribution, reversibility follows immediately.
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Example — AR(1)

We know that linear combinations of Normal random variables are Normal, so we expect the sta-
tionary distribution of our example AR(1) to be Normal. At convergence, successive distributions
are the same. In particular, the first and second moments at successive time points remain constant.

First, E
(

θ(n+1)
)

= E
(

θ(n)
)

, and so

E
(

θ(n)
)

= E
(

θ(n+1)
)

= E
(

αθ(n) + εn

)
= α E

(
θ(n)
)

⇒ E
(

θ(n)
)

= 0.

Similarly,

Var
(

θ(n)
)

= Var
(

θ(n+1)
)

= Var
(

αθ(n) + εn

)
= α2Var

(
θ(n)
)

+ σ2

⇒ Var
(

θ(n)
)

=
σ2

1−α2 .

So, we think the stationary distribution is Normal with mean zero and varianceσ2/(1−α2). That
is, we think the stationary density is

π(x) =
1√
2πσ2

1−α2

exp

{
−1

2
x2

σ2

1−α2

}

=

√
1−α2

2πσ2 exp

{
−x2(1−α2)

2σ2

}
.

Since we know the transition density for this chain, we can see if this density satisfies detailed
balance:

π(x)p(x,y) =

√
1−α2

2πσ2 exp

{
−x2(1−α2)

2σ2

}
× 1

σ
√

2π
exp

{
−1

2

(
y−αx

σ

)2
}

=

√
1−α2

2πσ2 exp

{
− 1

2σ2 [x2−2αxy+y2]
}

after a little algebra. But this expression is exactly symmetric inx andy, and so

π(x)p(x,y) = π(y)p(y,x).

So we see thatπ(·) does satisfy detailed balance, and so the AR(1) is areversibleMarkov chain
anddoeshave stationary distributionπ(·).
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3.3 Simulation

3.3.1 Simulating Markov chains

Markov chain simulation is easy provided that we can simulate from the initial distribution,π(0)(x),
and from the conditional distribution represented by the transition kernel,p(x,y).

First we simulateθ(0) from π(0)(·), using one of the techniques discussed in Chapter 2. We
can then simulateθ(1) from p(θ(0), ·), as this is just a density. In general, once we have simulated
a realisation ofθ(n), we can simulateθ(n+1) from p(θ(n), ·), using one of the standard techniques
from Chapter 2.

Example — AR(1)

Let us start our AR(1) off atθ(0) = 0, so we don’t need to simulate anything for the initial value.
Next we want to simulateθ(1) from p(θ(0), ·) = p(0, ·), that is, we simulateθ(1) from N(0,σ2).
Next we simulateθ(2) from p(θ(1), ·), that is, we simulateθ(2) from N(αθ(1),σ2). In general,
having simulatedθ(n), we simulateθ(n+1) from N(αθ(n),σ2).

3.3.2 “Burn-in” and the stationary distribution

As n gets large, the distribution ofθ(n) tends to the distribution with densityπ(·), the stationary
distribution of the chain. All values sampled after convergence has been reached are draws from
π(·). There is a “burn-in” period before convergence is reached, so if interest is inπ(·), these values
should be discarded before analysis takes place.

3.3.3 Analysis

If we are interested in an integral∫
S
g(x)π(x)dx= Eπ(g(Θ)) ,

then if θ(1),θ(2), . . . ,θ(n) are draws fromπ(·), this integral may be approximated by

Eπ(g(Θ))' 1
n

n

∑
i=1

g(θ(i)).

However,draws from a Markov chain are not independent, so the variance of the sample mean
cannot be computed in the usual way.

Supposeθ(i) ∼ π(·), i = 1,2, . . . . Then

Eπ(Θ)' 1
n

n

∑
i=1

θ(i) = θ̄n.

Let Var(Θ) = Var
(

θ(i)
)

= ν2. Then if theθi were independent, we would have

Var
(
θ̄n
)

=
ν2

n
.
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However, if theθ(i) arenot independent (eg.sampled from a non-trivial Markov chain), then

Var
(
θ̄n
)
6= ν2

n
.

Example — AR(1)

Var
(

θ(i)
)

=
σ2

1−α2 = ν2

and

γ(k) = Cov
(

θ(i),θ(i+k)
)

= ν2αk,

so

Var
(
θ̄n
)

=
1
n2Var

(
n

∑
i=1

θ(i)

)

=
ν2

n2

(
n+

n−1

∑
i=1

2(n− i)αi

)
.

We can get Maple to sum this up for us as follows:

> S:=sum(2*(n-i)*alphaˆi,i=1..(n-1));
> V:=((sigmaˆ2)/(nˆ2*(1-alphaˆ2)))*(n+s);
> simplify(expand(V));

which gives

Var
(
θ̄n
)

=
1
n2

σ2

1−α2

n+2αn+1−2α−nα2

(1−α)2

=
1
n

σ2

1−α2

[
1+ α
1−α

− 2α(1−αn)
n(1−α)2

]
.

To a first approximation, we have

Var
(
θ̄n
)
' 1

n
σ2

1−α2

1+ α
1−α

,

and so the “correction factor” for the naive calculation based on an assumption of independence is
(1+α)/(1−α). Forα close to one, this can be very large.eg. for α = 0.95, (1+α)/(1−α) = 39,
and so the variance of the sample mean is actually around 40 times bigger than calculations based
on assumptions of independence would suggest. Similarly, confidence intervals should be around
6 times wider than calculations based on independence would suggest.

We can actually use this analysis in order to analyse other Markov chains. If the Markov
chain is reasonably well approximated by an AR(1) (and many are), then we can estimate the
variance of our sample estimates by the AR(1) variance estimate. For an AR(1),α is just the lag 1
autocorrelation of the chain (Corr(θ(i),θ(i+1)) = α), and so we can estimate theα of any simulated
chain by the sample autocorrelation at lag 1. We can then use this to compute or correct sample
variance estimates based on sample means of chain values.
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Chapter 4

Markov Chain Monte Carlo

4.1 Introduction

In Chapter 2, we discussed the fundamentals of stochastic simulation techniques. In Chapter 3,
we looked at Markov chains, their properties and how to simulate them. In this chapter we will be
concerned with combining the two in order to provide a flexible framework for simulating from
complex distributions based on simulated values from carefully constructed Markov chains. The
techniques are generally referred to asMarkov Chain Monte Carlotechniques, and are often abbre-
viated to MCMC. There has been an explosion in the use of MCMC in statistics over recent years,
primarily because of their application in Bayesian inference. However, MCMC has application in
other areas of statistics too, and so the theory will be presented in a general context before being
applied to the problem of simulating from Bayesian posterior distributions.

There are many different MCMC techniques, but we only have time to look briefly at two of the
most fundamental. The first is theGibbs sampler, which was at the forefront of the recent MCMC
revolution, and the second is generally known asMetropolis-Hastingssampling. In fact, MCMC
schemes based on the combination of these two fundamental techniques are still at the forefront of
MCMC research.

4.2 The Gibbs sampler

4.2.1 Introduction

The Gibbs sampler is a way of simulating from multivariate distributions based only on the ability
to simulate from conditional distributions. In particular, it is appropriate when sampling from
marginal distributions is not convenient or possible.

Example

Reconsider the problem from Chapter 1 of Bayesian inference for the mean and variance of a
normally distributed random sample. In particular, consider the non-conjugate approach based on
independent prior distributions for the mean and variance. We had

Xi |µ,τ∼ N(µ,1/τ) independently,i = 1, . . . ,n

τ∼Gamma(a,b)
µ∼ N(c,1/d).
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We used these to derive the joint posterior distribution forµ andτ based on a samplex of sizen in
terms of the sufficient statistics

x̄ =
1
n

n

∑
i=1

xi , s2 =
1

n−1

n

∑
i=1

(xi− x̄)2.

The posterior took the form

π(µ,τ|x) ∝ τa+ n
2−1exp

{
−τ

2

[
(n−1)s2 +n(x̄−µ)2]− d

2
(µ−c)2−bτ

}
.

As explained previously, this distribution is not in a standard form. However, whilst clearly not
conjugate, this problem is often referred to assemi-conjugate, because the twofull conditional
distributionsπ(µ|τ,x) and π(τ|µ,x) are of standard form, and further,are of the same form as
the independent prior specifications, that is,τ|µ,x is gamma distributed, andµ|τ,x is normally
distributed. In fact,

τ|µ,x∼Gamma

(
a+

n
2
,b+

1
2

[
(n−1)s2 +n(x̄−µ)2])

µ|τ,x∼ N

(
cd+nτx̄
nτ +d

,
1

nτ +d

)
.

So, providing that we can simulate normal and gamma quantities, we can simulate from the full
conditionals. How can we simulate from the joint density or the marginals?

4.2.2 Sampling from bivariate densities

Consider a bivariate densityπ(x,y). We have

π(x,y) = π(x)π(y|x)

so we can simulate fromπ(x,y) by first simulatingX = x from π(x), and then simulatingY = y
from π(y|x). On the other hand, if we can simulate from the marginal fory, we can write

π(x,y) = π(y)π(x|y)

and simulateY = y from π(y) and thenX = x from π(x|y). Either way we need to be able to
simulate from one of the marginals!

Let’s just suppose we can, that is, we have anX = x from π(x). Given this, we can now simulate
aY = y from π(y|x) to give a pair of points(x,y) from the bivariate density. However, in that case
they value must be from the marginalπ(y), and so we can simulate anX′ = x′ from π(x′|y) to give
a new pair of points(x′,y) also from the joint density. But nowx′ is from the marginalπ(x), and
so we can keep going. This alternate sampling from conditional distributions defines a bivariate
Markov chain, and we have just given an intuitive explanation for whyπ(x,y) is its stationary
distribution. The transition kernel for this bivariate Markov chain is

p((x,y),(x′,y′)) = π(x′,y′|x,y) = π(x′|x,y)π(y′|x′,x,y) = π(x′|y)π(y′|x′).
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4.2.3 The Gibbs sampler

Suppose the density of interest isπ(θ), whereθ = (θ1, . . . ,θd)′, and that the full conditionals

π(θi |θ1, . . . ,θi−1,θi+1, . . . ,θd) = π(θi |θ−i) = πi(θi), i = 1, . . . ,d

are available for simulating from. The Gibbs sampler follows the following algorithm:

1. Initialise the iteration counter toj = 1. Initialise the state of the chain toθ(0) = (θ(0)
1 , . . . ,θ(0)

d )′.

2. Obtain a new valueθ( j) from θ( j−1) by successive generation of values

θ( j)
1 ∼ π(θ1|θ

( j−1)
2 , . . . ,θ( j−1)

d )

θ( j)
2 ∼ π(θ2|θ

( j)
1 ,θ( j−1)

3 , . . . ,θ( j−1)
d )

...
...

...

θ( j)
d ∼ π(θd|θ

( j)
1 , . . . ,θ( j)

d−1)

3. Change counterj to j +1, and return to step 2.

This clearly defines a homogeneous Markov chain, as each simulated value depends only on the
previous simulated value, and not on any other previous values or the iteration counterj. However,
we need to show thatπ(θ) is a stationary distribution of this chain. The transition kernel of the
chain is

p(θ,φ) =
d

∏
i=1

π(φi |φ1, . . . ,φi−1,θi+1, . . . ,θd).

Therefore, we just need to check thatπ(θ) is the stationary distribution of the chain with this
transition kernel. Unfortunately, the traditionalfixed-sweepGibbs sampler just described isnot re-
versible, and so we cannot check stationarity by checking for detailed balance (as detailed balance
fails). We need to do a direct check of the stationarity ofπ(θ), that is, we need to check that

π(φ) =
∫

S
p(θ,φ)π(θ)dθ.

For the bivariate case, we have∫
S

p(θ,φ)π(θ)dθ =
∫

S
π(φ1|θ2)π(φ2|φ1)π(θ1,θ2)dθ1dθ2

= π(φ2|φ1)
∫

S1

∫
S2

π(φ1|θ2)π(θ1,θ2)dθ1dθ2

= π(φ2|φ1)
∫

S2

π(φ1|θ2)dθ2

∫
S1

π(θ1,θ2)dθ1

= π(φ2|φ1)
∫

S2

π(φ1|θ2)π(θ2)dθ2

= π(φ2|φ1)π(φ1)
= π(φ1,φ2)
= π(φ).

The general case is similar. So,π(θ) is a stationary distribution of this chain. Discussions of
uniqueness and convergence are beyond the scope of this course. In particular, these issues are
complicated somewhat by the fact that the sampler described is not reversible.

27



4.2.4 Reversible Gibbs samplers

Whilst the fixed-sweep Gibbs sampler itself is not reversible, eachcomponent updateis, and hence
there are many variations on the fixed-sweep Gibbs sampler whichare reversible, and hence do
satisfy detailed balance. Let us start by looking at why each component update is reversible.

Suppose we wish to update componenti, that is, we updateθ by replacingθi with φi drawn
from π(φi |θ−i). All other components will remain unchanged. The transition kernel for this update
is

p(θ,φ) = π(φi |θ−i)I(θ−i = φ−i)

where

I(E) =

{
1 if E is true,

0 if E is false.

Note that the density is zero for any transition changing the other components. Now we may check
detailed balance:

π(θ)p(θ,φ) = π(θ)π(φi |θ−i)I(θ−i = φ−i)
= π(θ−i)π(θi |θ−i)π(φi |θ−i)I(θ−i = φ−i)
= π(φ−i)π(θi |φ−i)π(φi |φ−i)I(θ−i = φ−i) (asθ−i = φ−i)

= π(φ)π(θi |φ−i)I(θ−i = φ−i)
= π(φ)p(φ,θ).

Therefore detailed balance is satisfied, and hence the update is reversible with stationary distribu-
tion π(·).

If this particular update is reversible, and preserves the equilibrium distribution of the chain,
why bother updating any other component? The reason is that the chain defined by a single update
is reducible, and hence will not converge to the stationary distribution from an arbitrary starting
point. In order to ensureirreducibility of the chain, we need to make sure that we update each
component sufficiently often. As we have seen, one way to do this is to update each component in
a fixed order. The drawback of this method is thatreversibility is lost when we do this.

An alternative to thefixed-sweepstrategy is to pick a component at random at each stage, and
update that. This gives a reversible chain with the required stationary distribution, and is known as
therandom scanGibbs sampler.

An even simpler way to restore the reversibility of the chain is to first scan through the com-
ponents in fixed order, and then scan backwards through the components. This does define a re-
versible Gibbs sampler. We can check that it works in the bivariate case as follows. The algorithm
starts with(θ1,θ2) and then generates(φ1,φ2) as follows:

θ′1∼ π(θ′1|θ2)
φ2∼ π(φ2|θ′1)
φ1∼ π(φ1|φ2).

Hereθ′1 is an auxiliary variable that we are not interested inper se, and which needs to be integrated
out of the problem. The full transition kernel is

p(θ,(θ′1,φ)) = π(θ′1|θ2)π(φ2|θ′1)π(φ1|φ2),
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and integrating out the auxiliary variable gives

p(θ,φ) =
∫

π(θ′1|θ2)π(φ2|θ′1)π(φ1|φ2)dθ′1

= π(φ1|φ2)
∫

π(θ′1|θ2)π(φ2|θ′1)dθ′1.

We can now check for detailed balance:

π(θ)p(θ,φ) = π(θ)π(φ1|φ2)
∫

π(θ′1|θ2)π(φ2|θ′1)dθ′1

= π(θ2)π(θ1|θ2)π(φ1|φ2)
∫

π(θ′1|θ2)π(φ2|θ′1)dθ′1

= π(θ1|θ2)π(φ1|φ2)
∫

π(θ2)π(θ′1|θ2)π(φ2|θ′1)dθ′1

= π(θ1|θ2)π(φ1|φ2)
∫

π(θ′1,θ2)π(φ2|θ′1)dθ′1

= π(θ1|θ2)π(φ1|φ2)
∫

π(θ′1)π(θ2|θ′1)π(φ2|θ′1)dθ′1,

and, as this is symmetric inθ andφ, we must have

π(θ)p(θ,φ) = π(φ)p(φ,θ).

This chain is therefore reversible with stationary distributionπ(·).
We have seen that there are ways of adapting the standard fixed-sweep Gibbs sampler in ways

which ensure reversibility. However, reversibility is not a requirement of a useful algorithm — it
simply makes it easier to determine the properties of the chain. In practice, the fixed-sweep Gibbs
sampler often has as good or better convergence properties than its reversible cousins. Given that it
is slightly easier to implement and debug, it is often simpler to stick with the fixed-sweep scheme
than to implement a more exotic version of the sampler.

4.2.5 Simulation and analysis

Suppose that we are interested in a multivariate distributionπ(θ) (which may be a Bayesian pos-
terior distribution), and that we are able to simulate from the full conditional distributions ofπ(θ).
Simulation fromπ(θ) is possible by first initialising the sampler somewhere in the support ofθ,
and then running the Gibbs sampler. The resulting chain should be monitored for convergence,
and the “burn-in” period should be discarded for analysis. After convergence, the simulated values
are all fromπ(θ). In particular, the values for a particular component will be simulated values
from the marginal distribution of that component. A histogram of these values will give an idea
of the “shape” of the marginal distribution, and summary statistics such as the mean and variance
will be approximations to the mean and variance of the marginal distribution. The accuracy of the
estimates can be gauged using the techniques from the end of Chapter 3.
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Example

Returning to the case of the posterior distribution for the normal model with unknown mean and
precision, we have already established that the full conditional distributions are

τ|µ,x∼Gamma

(
a+

n
2
,b+

1
2

[
(n−1)s2 +n(x̄−µ)2])

µ|τ,x∼ N

(
cd+nτx̄
nτ +d

,
1

nτ +d

)
.

We can initialise the sampler anywhere in the half-plane where the posterior (and prior) has sup-
port, but convergence will be quicker if the chain is not started in the tails of the distribution. One
possibility is to start the sampler near the posterior mode, though this can make convergence more
difficult to diagnose. A simple strategy which is often easy to implement for problems in Bayesian
inference is to start off the sampler at a point simulated from the prior distribution, or even at
the mean of the prior distribution. Here, the prior mean for(τ,µ) is (a/b,c). Once initialised,
the sampler proceeds with alternate simulations from the full conditional distributions. The first
few (hundred?) values should be discarded, and the rest can give information about the posterior
marginal distributions.

Of course, the Gibbs sampler tacitly assumes that we have some reasonably efficient mech-
anism for simulating from the full conditional distributions, and yet this isn’t always the case.
Fortunately, the Gibbs sampler can be combined with Metropolis-Hastings algorithms when the
full conditionals are difficult to simulate from.

4.3 Metropolis-Hastings sampling

4.3.1 Introduction

Let us return to the problem we considered in Chapter 2: given a distribution, how can we simulate
from it? If none of the techniques from Chapter 2 are (obviously) appropriate, what can we do?
One possibility is to construct a reversible Markov chain which has the distribution of interest
as its stationary distribution. Then, by simulating such a Markov chain we can obtain random
variates from the distribution of interest. Obviously such a strategy will not result in a sequence of
independent values from the distribution, but this does not necessarily matter. The question is then
how to construct such a Markov chain? Obviously, it must be easier to simulate the Markov chain
(using methods from Chapter 2) than to simulate from the stationary distribution itself, or nothing
has been gained. There are actually many ways we can do this, but there is a general class of
methods known as Metropolis-Hastings schemes, which are generally applicable and widely used.
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4.3.2 Metropolis-Hastings algorithm

Suppose thatπ(θ) is the density of interest. Suppose further that we have some (arbitrary) transition
kernelq(θ,φ) (known as theproposal distribution) which is easy to simulate from, but does not
(necessarily) haveπ(θ) as its stationary density. Consider the following algorithm:

1. Initialise the iteration counter toj = 1, and initialise the chain toθ(0).

2. Generate aproposedvalueφ using the kernelq(θ( j−1),φ).

3. Evaluate theacceptance probabilityα(θ( j−1),φ) of the proposed move, where

α(θ,φ) = min

{
1,

π(φ)q(φ,θ)
π(θ)q(θ,φ)

}
.

4. Putθ( j) = φ with probabilityα(θ( j−1),φ), and putθ( j) = θ( j−1) otherwise.

5. Change the counter fromj to j +1 and return to step 2.

In other words, at each stage, a new value is generated from the proposal distribution. This is
either accepted, in which case the chain moves, or rejected, in which case the chain stays where it
is. Whether or not the move is accepted or rejected depends on an acceptance probability which
itself depends on the relationship between the density of interest and the proposal distribution.
Note that the density of interestπ(·) only enters into the acceptance probability as a ratio, and so
the method can be used when the density of interest is only known up to a scaling constant.

The Markov chain defined in this way is reversible, and has stationary distributionπ(·) irre-
spective of the choice of proposal distribution,q(·, ·). Let us see why. The transition kernel is
clearly given by

p(θ,φ) = q(θ,φ)α(θ,φ), if θ 6= φ.

But there is also a finite probability that the chain will remain atθ. This is one minus the probability
that the chain moves, and thus is given by

1−
∫

q(θ,φ)α(θ,φ)dφ.

So, the transition kernel is part continuous and part discrete. We can easily write down the cumu-
lative distribution form of the transition kernel as

P(θ,φ) =
∫ φ

−∞
q(θ,φ)α(θ,φ)dφ + I(φ≥ θ)

[
1−

∫
q(θ,φ)α(θ,φ)dφ

]
.

We then get the full density form of the kernel by differentiating with respect toφ as

p(θ,φ) = q(θ,φ)α(θ,φ)+ δ(θ−φ)
[
1−

∫
q(θ,φ)α(θ,φ)dφ

]
,
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whereδ(·) is the Diracδ-function. Now we have the transition kernel we can check whether
detailed balance is satisfied:

π(θ)p(θ,φ) = π(θ)q(θ,φ)min

{
1,

π(φ)q(φ,θ)
π(θ)q(θ,φ)

}
+ δ(θ−φ)

[
π(θ)−

∫
π(θ)q(θ,φ)min

{
1,

π(φ)q(φ,θ)
π(θ)q(θ,φ)

}
dφ
]

= min{π(θ)q(θ,φ),π(φ)q(φ,θ)}

+ δ(θ−φ)
[

π(θ)−
∫

min{π(θ)q(θ,φ),π(φ)q(φ,θ)} dφ
]
.

The first term is clearly symmetric inθ andφ. Also, the second term must be symmetric inθ andφ,
because it is only non-zero precisely whenθ = φ. Consequently, detailed balance is satisfied, and
the Metropolis-Hastings algorithm defines a reversible Markov chain with stationary distribution
π(·), irrespective of the form ofq(·, ·).

Complete freedom in the choice of the proposal distributionq(·, ·) leaves us wondering what
kinds of choices might be good, or generally quite useful. Some commonly used special cases are
discussed below.

4.3.3 Symmetric chains (Metropolis method)

The simplest case is the Metropolis sampler, which is based on the use of a symmetric proposal
with q(θ,φ) = q(φ,θ), ∀θ,φ. We see then that the acceptance probability simplifies to

α(θ,φ) = min

{
1,

π(φ)
π(θ)

}
,

and hence does not involve the proposal density at all. Consequently proposed moves which will
take the chain to a region of higher density are always accepted, while moves which take the
chain to a region of lower density are accepted with probability proportional to the ratio of the two
densities — moves which will take the chain to a region of very low density will be accepted with
very low probability. Note that any proposal of the formq(θ,φ) = f (|θ−φ|) is symmetric, where
f (·) is an arbitrary density. In this case, the proposal will represent a symmetric displacement from
the current value. This also motivates the following.

4.3.4 Random walk chains

In this case, the proposed valueφ at stagej is φ = θ( j−1) +w j where thew j are iid random variables
(completely independent of the state of the chain). Suppose that thew j have densityf (·), which
is easy to simulate from. We can then simulate aninnovation, w j , and set thecandidatepoint to
φ = θ( j−1) + w j . The transition kernel is thenq(θ,φ) = f (φ−θ), and this can be used to compute
the acceptance probability. Of course, iff (·) is symmetric about zero, then we have a symmetric
chain, and the acceptance probability does not depend onf (·) at all.

So, suppose you decide to use a symmetric random walk chain with proposed mean zero in-
novations. There is still the question of how they should be distributed, and what variance they
should have. A simple, easy to simulate from distribution is always a good idea, such as uniform
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or normal (normal is generally better, but is a bit more expensive to simulate). So, what variance
should we choose? The choice of variance will affect the acceptance probability, and hence the
overall proportion of accepted moves. If the variance of the innovation is too low, then most pro-
posed values will be accepted, but the chain will move very slowly around the space — the chain
is said to be too “cold”. On the other hand, if the variance of the innovation is too large, very
few proposed values will be accepted, but when they are, they will often correspond to quite large
moves — the chain is said to be too “hot”. Experience suggests that an overall acceptance rate of
around 30% is desirable, and so it is possible to “tune” the variance of the innovation distribution
to get an acceptance rate of around this level.

4.3.5 Independence chains

In this case (reminiscent of the envelope rejection method and importance sampling), the proposed
transition is formed independently of the previous position of the chain, and soq(θ,φ) = f (φ) for
some densityf (·). Here the acceptance probability becomes

α(θ,φ) = min

{
1,

π(φ)
π(θ)

/
f (φ)
f (θ)

}
,

and we see that the acceptance probability can be increased by makingf (·) as similar toπ(·) as
possible (in this case, the higher the acceptance probability, the better).

Bayes Theorem via independence chains

In the context of Bayesian inference, just as with the envelope method, one possible choice for the
proposal density is the prior density. The acceptance probability then becomes

α(θ,φ) = min

{
1,

L(φ;x)
L(θ;x)

}
,

and hence depends only on the likelihood ratio of the candidate point and the current value.

4.4 Hybrid methods

We have now seen how we can use the Gibbs sampler to sample from multivariate distributions
provided that we can simulate from the full conditionals. We have also seen how we can use
Metropolis-Hastings methods to sample from awkward distributions (perhaps full conditionals). If
we wish, we can combine these in order to form hybrid Markov chains whose stationary distribu-
tion is a distribution of interest.

4.4.1 Componentwise transition

Given a multivariate distribution with full conditionals that are awkward to sample from directly,
we can define a Metropolis-Hastings scheme for each full conditional, and apply them to each
component in turn for each iteration. This is like the Gibbs sampler, but each component update is
a Metropolis-Hastings update, rather than a direct simulation from the full conditional. This is in
fact the original form of the Metropolis algorithm.
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4.4.2 Metropolis within Gibbs

Given a multivariate distribution with full conditionals, some of which may be simulated from di-
rectly, and others which have Metropolis-Hastings updating schemes, the Metropolis within Gibbs
algorithm goes through each in turn, and simulates directly from the full conditional, or carries out
a Metropolis-Hastings update as necessary.

4.4.3 Blocking

The components of a Gibbs sampler, and those of Metropolis-Hastings chains, can be vectors (or
matrices) as well as scalars. For many high-dimensional problems, it can be helpful to group
related parameters together into blocks, and use multivariate simulation techniques to update those
together if possible.

It is very useful to know of the existence of these hybrid methods for more complex problems,
but the actual implementation of such schemes is beyond the scope of this course.

4.5 Summary and conclusions

The purpose of this part of the course was two-fold.

1. To develop an understanding of the advanced simulation techniques used in modern statisti-
cal analysis.

2. To show how these techniques can be used to carry out Bayesian inference for complex
models where analytic analysis is intractable.

We will finish the course by looking briefly at an example of Bayesian inference for a problem
which is a little more involved than any we have analysed previously.

Example

Consider the following simplehierarchical(or one-way random effects) model:

Yi j |θi ,τ∼ N(θi ,1/τ), independently,i = 1, . . . ,m, j = 1, . . .ni

θi |µ,ν∼ N(µ,1/ν), i = 1, . . . ,m.

Such a model could be used to model a quality attribute of an industrial batch process, wherem
batches of items are produced, and batchi containsni items.Yi j is the measurement made on the
jth item in batchi. We assume that batchi has meanθi and that the measurements are normally
distributed. We also assume that theθi are themselves normally distributed. Essentially, the model
has the effect of inducing a correlation between items in a batch, due to the fact that we expect
items within a batch to be more similar than items from different batches. Note that this generic
scenario can be applied to a range of situations. For example, the items of interest could be schools,
and the batches could represent LEAs. By measuring the performance of the schools within LEAs,
inferences can be made about the quality of the LEAs themselves.

We will consider the most general (and quite typical) case whereµ, τ andν are all unknown.
We wish to make inferences about these parameters, and the unknownθi . Thus there arem+ 3
parameters of interest in this model.

34



The specification of the model is completed with independent priors forµ, τ andν:

µ∼ N(a,1/b)
τ∼Gamma(c,d)
ν∼Gamma(e, f ).

In principle we have now completely specified the model, and can compute the posterior distribu-
tion. Of course, the posterior distribution is very high dimensional and, more importantly, not of
a standard form. Here MCMC techniques can be used to describe the posterior distribution. The
likelihood contribution for each observationyi j is

L(θi ,τ;yi j ) =
√

τ
2π

exp
{
−τ

2
(yi j −θi)2

}
and so the full likelihood is

L(θ,τ;y) =
m

∏
i=1

ni

∏
j=1

L(θi ,τ;yi j )

=
( τ

2π

)N/2
exp

{
−τ

2

m

∑
i=1

[
(ni−1)s2

i +ni(yi·−θi)2]}

where

N =
m

∑
i=1

ni , yi· =
1
ni

ni

∑
j=1

yi j , s2
i =

1
ni−1

ni

∑
j=1

(yi j −yi·)2.

The prior takes the form

π(µ,τ,ν,θ) = π(µ)π(τ)π(ν)π(θ|µ,ν)

where

π(µ) ∝ exp

{
−b

2
(µ−a)2

}
π(τ) ∝ τc−1exp{−dτ}
π(ν) ∝ νe−1exp{− f ν}

π(θi |µ,ν) =
√

ν
2π

exp
{
−ν

2
(θi−µ)2

}
⇒ π(θ|µ,ν) ∝ νm/2exp

{
−ν

2

m

∑
i=1

(θi−µ)2

}

and therefore,

π(µ,τ,ν,θ) ∝ νe+m/2−1τc−1exp

{
−1

2

[
2dτ +2 f ν +b(µ−a)2 + ν

m

∑
i=1

(θi−µ)2

]}
.
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Now we have the likelihood and the prior, we can write down the posterior distribution:

π(µ,τ,ν,θ|y) ∝

τc+N/2−1νe+m/2−1exp

{
−1

2

[
2dτ +2 f ν +b(µ−a)2 +

m

∑
i=1

(
ν(θi−µ)2 + τ(ni−1)s2

i + τni(yi·−θi)2)]} .
It is difficult to do anything analytic with this, so we will try and construct a Gibbs sampler in order
to investigate it. This is fairly straightforward, and the full conditionals are as follows. The full
conditional forµ is

π(µ|·) ∝ exp

{
−1

2

[
b(µ−a)2 +

m

∑
i=1

ν(θi−µ)2

]}

∝ exp

{
−1

2
(b+mν)

(
µ− ba+mνθ̄

b+mν

)2
}
, whereθ̄ =

1
m

m

∑
i=1

θi ,

that is

µ|· ∼ N

(
ba+nνθ̄
b+mν

,
1

b+mν

)
.

The conditional forτ is

π(τ|·) ∝ τc+N/2−1exp

{
−τ

[
d+

1
2

m

∑
i=1

(
(ni−1)s2

i +ni(yi·−θi)2)]} ,
that is

τ|· ∼ Gamma

(
c+N/2,d+

1
2

m

∑
i=1

[
(ni−1)s2

i +ni(yi·−θi)2]) .

The conditional forν is

π(ν|·) ∝ νe+m/2−1exp

{
−ν

[
f +

1
2

m

∑
i=1

(θi−µ)2

]}
,

that is

ν|· ∼ Gamma

(
e+m/2, f +

1
2

m

∑
i=1

(θi−µ)2

)
.

The conditional forθi is

π(θi |·) ∝ exp

{
−1

2

[
ν(θi−µ)2 + τni(yi·−θi)2]}

∝ exp

{
−1

2
(ν +niτ)

(
θi−

νµ+niyi·τ
ν +niτ

)2
}
,
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that is

θi |· ∼ N

(
νµ+niyi·τ

ν +niτ
,

1
ν +niτ

)
, i = 1, . . .m .

Therefore, we have a Gibbs sampler withm+ 3 components. We just have to specify the prior
parametersa,b,c,d,e, f and compute the data summariesm,ni ,N,yi·,s2

i , i = 1, . . . ,m. Then, we
initialise the sampler by simulating from the prior, or by starting off each component at its prior
mean. The sampler is then run to convergence, and samples from the stationary distribution are
used to understand the marginals of the posterior distribution. This model is of sufficient complex-
ity that assessing convergence of the sampler to its stationary distribution is a non-trivial task. At
the very least, multiple large simulation runs are required, with different starting points, and the
first portion (say, a third) of any run should be discarded as “burn-in”.

We have seen that the algebra can get quite tricky as we build up more and more complex
models. Ultimately, we want the computer to look after this for us, as well as the actual simulation.
The computer program WinBUGS does exactly this. Using the software, the model prior and data
is specified. The software then works out for itself how to sample from the full conditionals. With
such ease of use, some control over how the sampling is carried out is lost, but usually this is a price
worth paying. Using WinBUGS, models of considerable complexity and flexibility may be built.
However, as the complexity of the model increases, problems with assessment of the convergence
of the sampler increase. Again, we would ideally want the computer to take care of this for us.
There are many software tools available for MCMC convergence diagnostics (such as CODA), but
their use is far from automatic, and beyond the scope of this course.
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