References
Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2014. Hierarchical
Modeling and Analysis for Spatial Data. Chapman & Hall/CRC
Monographs on Statistics and Applied Probability. CRC Press.
Chatfield, C., and H. Xing. 2019. The Analysis of Time Series: An
Introduction with R. CRC Press.
Cressie, N. 2015. Statistics for Spatial Data. Wiley.
Cressie, N., and C. K. Wikle. 2015. Statistics for Spatio-Temporal
Data. Wiley.
Gelfand, A. E., P. Diggle, P. Guttorp, and M. Fuentes. 2010.
Handbook of Spatial Statistics. CRC Press.
Lauritzen, S. L. 1996. Graphical Models. Oxford Science
Publications.
Petris, G., S. Petrone, and P. Campagnoli. 2009. Dynamic Linear
Models with R. Use R! New York: Springer.
Priestley, M. B. 1989. Spectral Analysis and Time Series.
Academic Press.
Rasmussen, C. E., and C. K. I. Williams. 2005. Gaussian Processes
for Machine Learning. MIT Press.
Ripley, B. D. 2005. Spatial Statistics. Wiley.
Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory
and Applications. CRC Press.
Särkkä, S., and L. Svensson. 2023. Bayesian Filtering and
Smoothing. Cambridge University Press.
Schabenberger, O., and C. A. Gotway. 2017. Statistical Methods for
Spatial Data Analysis. Chapman & Hall/CRC Texts in Statistical
Science. CRC Press.
Shumway, R. H., and D. S. Stoffer. 2017. Time Series Analysis and
Its Applications, with R Examples, Fourth Edition.
Springer.
West, M., and J. Harrison. 2013. Bayesian Forecasting and Dynamic
Models. Springer.
Wikle, C. K., A. Zammit-Mangion, and N. Cressie. 2019.
Spatio-Temporal Statistics with R. CRC Press.