References

Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2014. Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC Monographs on Statistics and Applied Probability. CRC Press.
Chatfield, C., and H. Xing. 2019. The Analysis of Time Series: An Introduction with R. CRC Press.
Cressie, N. 2015. Statistics for Spatial Data. Wiley.
Cressie, N., and C. K. Wikle. 2015. Statistics for Spatio-Temporal Data. Wiley.
Gelfand, A. E., P. Diggle, P. Guttorp, and M. Fuentes. 2010. Handbook of Spatial Statistics. CRC Press.
Lauritzen, S. L. 1996. Graphical Models. Oxford Science Publications.
Petris, G., S. Petrone, and P. Campagnoli. 2009. Dynamic Linear Models with R. Use R! New York: Springer.
Priestley, M. B. 1989. Spectral Analysis and Time Series. Academic Press.
Rasmussen, C. E., and C. K. I. Williams. 2005. Gaussian Processes for Machine Learning. MIT Press.
Ripley, B. D. 2005. Spatial Statistics. Wiley.
Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory and Applications. CRC Press.
Särkkä, S., and L. Svensson. 2023. Bayesian Filtering and Smoothing. Cambridge University Press.
Schabenberger, O., and C. A. Gotway. 2017. Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC Texts in Statistical Science. CRC Press.
Shumway, R. H., and D. S. Stoffer. 2017. Time Series Analysis and Its Applications, with R Examples, Fourth Edition. Springer.
West, M., and J. Harrison. 2013. Bayesian Forecasting and Dynamic Models. Springer.
Wikle, C. K., A. Zammit-Mangion, and N. Cressie. 2019. Spatio-Temporal Statistics with R. CRC Press.